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Abstract 
    Background: Breast cancer is a complex and heterogeneous disease, and understanding its regulatory mechanisms and network 
characteristics is essential for identifying therapeutic targets and developing effective treatment strategies. This study aimed to unravel 
the intricate network of interactions involving differentially expressed genes, microribonucleic acid (miRNAs), and proteins in breast 
cancer through an integrative analysis of multi-omic data from Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) dataset. 
   Methods: The TCGA-BRCA dataset was used for data acquisition, which included RNA sequencing data for gene expression, miRNA 
sequencing data for miRNA expression, and protein expression quantification data. Various R packages, such as TCGAbiolinks, limma, 
and RPPA, were employed for data preprocessing and integration. Differential expression analysis, network construction, miRNA 
regulation exploration, pathway enrichment analysis, and independent dataset validation were performed. 
   Results: Eight consistently upregulated hub genes—including ACTB, HSP90AA1, FN1, HSPA8, CDC42, CDH1, UBC, and EP300—
were identified in breast cancer, indicating their potential significance in driving the disease. Pathway enrichment analysis revealed 
highly enriched pathways in breast cancer, including proteoglycans in cancer, PI3K-Akt, and mitogen-activated protein kinase signaling.  
   Conclusion: This integrated multi-omic data analysis provides valuable insights into the regulatory mechanisms, network 
characteristics, and functional roles of genes, miRNAs, and proteins in breast cancer. The findings contribute to our understanding of 
the molecular landscape of breast cancer, facilitate the identification of potential therapeutic targets, and inform strategies for effective 
treatment. 
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Introduction 
Breast cancer, recognized globally as a leading cause of 

cancer-related deaths among women, is a highly intricate 
and heterogeneous disease (1). Understanding its underly-
ing regulatory mechanisms, gene expressions, and biologi-
cal pathways is a critical focal point in oncological re-
search, essential for developing effective therapeutic strat-

egies and improving patient survival rates (2). The recog-
nition of this need forms the foundation upon which this 
research study on breast cancer is built. Diverse molecular 
alterations characterize the pathology of breast cancer and 
contribute to the broad range of clinical outcomes observed 
in patients (3). These molecular alterations manifested 
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↑What is “already known” in this topic: 
Breast cancer is a complex and heterogeneous disease, and previous 
research has emphasized the importance of understanding its 
regulatory mechanisms, network characteristics, and molecular 
alterations to develop effective treatment strategies.   
 
→What this article adds: 

This article adds insights into the regulatory mechanisms, network 
characteristics, and functional roles of genes, miRNAs, and proteins 
in breast cancer through an integrated analysis of multi-omic data, 
facilitating the identification of potential therapeutic targets and 
informing effective treatment strategies.  
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through differential gene and protein expressions and mi-
croribonucleic acid (miRNA) behaviors, are the dynamic 
players driving the disease’s progression. However, a de-
tailed exploration and understanding of the intricate net-
work interplay between these molecular elements is needed 
to truly make sense of these intricate interactions and work-
ings (4). This brings us to the core objectives of this study, 
which aims to unravel the complex network of interactions 
involving differentially expressed genes, microRNAs 
(miRNAs), and proteins in breast cancer.  

Through an integrated analysis of multi-omic data, the 
study sheds light on the various regulatory mechanisms, 
network characteristics, and functional roles of genes, miR-
NAs, and proteins in breast cancer (5). In seeking to map 
this complex landscape, we will harness the considerable 
potential of the expansive multi-omic data offered by The 
Cancer Genome Atlas Breast Cancer (TCGA-BRCA) da-
taset. By leveraging this large-scale dataset, we aim to per-
form an in-depth analysis highlighting the various molecu-
lar alterations present in breast cancer. The comprehensive 
scope of this dataset to provide vital insights into the possi-
ble therapeutic targets and inform the development of ef-
fective treatment strategies. The novelty of this approach 
lies in our focus on an integrative, multiomic analysis, mov-
ing beyond static, singular datasets to generate a detailed 
examination of the complex interwikiing of genes, miR-
NAs, and proteins in cancerous cells. We will utilize vari-
ous R packages for data preprocessing and integration to 
facilitate this analytical process, such as TCGAbiolinks, 
limma, and reverse-phase protein array (RPPA). After ac-
quiring the necessary dataset, a differential expression anal-
ysis will identify dysregulated genes, miRNAs, and pro-
teins within the TCGA-BRCA dataset. Identifying these 
dysregulated elements will provide deeper insights into the 
molecular markers of breast cancer and could, ultimately, 
become potential therapeutic targets. Understanding the 
pathways these dysregulated genes, miRNAs, and protein 
markers navigate through will be the focus of the pathway 
enrichment analysis. This knowledge will not only enhance 
our understanding of the underlying molecular mechanisms 
driving breast cancer but also pave the way for the devel-
opment of targeted therapeutic interventions. In addition, 
by validating our findings using independent datasets and 
conducting gene expression analysis, we aim to strengthen 
the reliability and significance of our results.  

 
Methods 
Data Acquisition                 
The study's selection of breast cancer patients was based 

on specific inclusion and exclusion criteria to ensure the 
relevance and quality of the data used in the analysis. Pa-
tients with various tumor stages were included to encom-
pass the heterogeneity of breast cancer. Moreover, the fo-
cus was on invasive breast carcinoma cases with different 
histological subtypes to explore the regulatory mechanisms 
and network characteristics across diverse subtypes. The 
patient selection process also considered the availability of 
multiomic data, including gene expression data obtained 
through RNA sequencing, miRNA data obtained through 
miRNA-Seq, and protein expression data obtained through 

protein expression quantification. The data preprocessing 
steps involved the utilization of several R packages. The 
TCGAbiolinks package filters the mRNA data based on the 
project, data category, type, and experimental strategy. 
MiRNA data were extracted using miRNA-Seq as the ex-
perimental strategy, while protein data utilized protein ex-
pression quantification. The mRNA and miRNA data were 
further processed using the limma package, which included 
normalization, log transformation, and batch correction. 
The protein data were normalized and log-transformed us-
ing the RPPA package. Subsequently, sample barcodes that 
had data available across all 3 data types (mRNA, miRNA, 
and protein) were obtained for further integrated analysis. 
(6). These steps ensured our study's comprehensive inves-
tigation of interactions and regulatory relationships be-
tween different molecular layers. 

 
Data Analysis 
Differential expression analysis was performed using the 

R package limma to identify abnormally expressed mRNA 
and miRNAs in the TCGA-BRCA dataset. In addition, the 
RPPA R package was utilized to identify abnormally ex-
pressed proteins in the same dataset. This analysis specifi-
cally focused on comparing breast cancer samples in late 
stages (stages I and II) with breast cancer samples in ad-
vanced stages (stages III and IV). Identifying differentially 
expressed genes involved applying initial selection criteria, 
including a log2 fold change of ≥1 and a P value < 0.05. 
Subsequently, the top-upregulated proteins and downregu-
lated miRNAs were identified. To investigate interactions 
between the differentially expressed genes, a protein-pro-
tein interaction network was constructed using the 
STRINGdb and igraph R packages (7). For constructing the 
protein-protein interaction network, a new instance of the 
STRING database was instantiated using Version 11.0. The 
organism specified was Homo sapiens, and a minimum 
score threshold of 200 was applied. The “get interactions” 
function was used to retrieve known and predicted interac-
tions between the upregulated genes, resulting in an edge 
list. Based on this edge list, an igraph object representing 
the network was created (8).  

 
Exploring Graph Characteristics 
Various methods were utilized to analyze the graph and 

explore its characteristics, including its nodes representing 
entities and edges representing their relationships. The ob-
jective was to gain insights into the connectivity patterns 
within the graph. First, the degree distribution of the graph 
was calculated using the degree-distribution function, 
providing information about the frequency of nodes with 
different degrees and illuminating the distribution of con-
nectivity. Next, a power-law model was fitted to the degree 
distribution using the power-law-fit function. This model 
describes the relationship where the frequency of nodes 
with a given degree follows a power-law distribution. Fit-
ting this model allowed the estimation of the power-law ex-
ponent, which characterizes the distribution's shape (9). To 
assess the goodness-of-fit of the power-law model, the P 
value was obtained from the Kolmogorov-Smirnov test us-
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ing the KS.p attribute of the fitted model. The P value rep-
resents the probability of observing a test statistic as ex-
treme as the one obtained, assuming that the data follow a 
power-law distribution (10). These analyses provided valu-
able insights into the characteristics of the graph and the 
distribution of connectivity among its nodes. The top 1% of 
high-degree hub nodes were found using quantile and saved 
as "hubs." Global clustering coefficient and betweenness 
centrality were calculated, and the result showed that the 
hubs were highly connected with high betweenness, imply-
ing important roles (11). In summary, network analysis pro-
vided insights into potential interactions among differen-
tially expressed breast cancer genes and identified hub 
genes that may play critical functional roles in the disease. 

 
Exploring miRNA Regulation of Hub Genes 
The multiMiR R package investigated regulatory rela-

tionships between hub genes and downregulated miRNAs. 
This package integrates miRNA-target interactions from 
multiple databases and predicts new interactions based on 
sequence complementarity. Using the getMiRNATargets 
function, both predicted and validated interactions for the 
downregulated miRNAs were retrieved. Moreover, the 
multiMiR package offers valuable insights into disease-
drug associations. Utilizing its extensive database, we can 
explore connections between hub genes associated with 
breast cancer and specific drugs targeting those genes or 
related pathways. This analysis enhances our understand-
ing of the regulatory landscape and potential therapeutic in-
terventions for breast cancer. This integrated approach, 
combining miRNA-target interactions and disease-drug as-
sociations, provides a comprehensive view of the regula-
tory mechanisms underlying breast cancer. These findings 
contribute to unraveling the complex network of interac-
tions involving hub genes, dysregulated miRNAs, and po-
tential therapeutic strategies in breast cancer research (12). 

 
Pathway Enrichment and Visualization 
Pathway enrichment analysis was performed using the 

KEGGREST R package to understand the functional roles 
of the identified hub genes. The KEGG database contains 
information on molecular pathways and networks in vari-
ous organisms. The keggGet function obtained KEGG 
pathway annotations for all human genes and the keggEn-
richer function analyzed pathway enrichment for the hub 
genes.  

A hypergeometric test was used to determine if the hub 
genes were overrepresented in particular KEGG pathways.  

Adjusted P values were calculated using the Benjamini-
Hochberg method for multiple testing correction (13). The 
Pathview R package was used to visualize the enriched 
pathways by creating pathway diagrams that highlighted 
the differentially expressed hub genes within each pathway. 
This integrated approach, combining the KEGGREST and 
Pathview packages with network analysis, provided a com-
prehensive understanding of the functional roles of the hub 
genes within specific pathways in primary breast cancer 
(14).  

 
 

Validation 
To validate the upregulated hub genes identified from 

TCGA-BRCA, the independent gene expression dataset 
GSE139038 was utilized. This dataset contained tran-
scriptomic data from early-stage and late-stage breast can-
cer samples (15). Differential expression analysis between 
late- and early-stage samples in GSE139038 was performed 
using GEO2R to identify significantly upregulated genes 
(log2FC > 1 and adjusted P < 0.05) (16). 

 
Expression Analysis by qPCR 
In this study, gene expression analysis was performed us-

ing a specific set of locked nucleic acid primers obtained 
from Exiqon. The 2-ΔΔCT method was utilized to normal-
ize the relative expression levels of the target gene. Nor-
malization was performed using the endogenous reference 
gene BET. Real-time polymerase chain reaction (PCR) re-
actions were conducted on the Chromo4 system, a Bio-Rad 
instrument. The real-time PCR kit provided (Takara Bio) 
was used for the PCR reactions. To ensure accuracy and 
reproducibility, all samples were run in technical tripli-
cates, and each sample underwent 40 cycles of PCR ampli-
fication. The thermal cycling conditions for the quantitative 
PCR (qPCR) reactions were as follows: an initial predena-
turation step at 95°C for 10 minutes, followed by denatura-
tion at 95°C for 20 seconds, annealing at 60°C for 30 sec-
onds, and extension at 72°C for 30 seconds. By following 
these experimental procedures, we aimed to accurately 
quantify the expression levels of the target gene using 
qPCR. This approach allowed us to assess the relative ex-
pression changes and investigate the gene's involvement in 
the studied context. 

 
Results 
Data Acquisition  
The analysis of the TCGA-BRCA dataset resulted in the 

following outcomes. A total of 878 samples had available 
data for mRNA, miRNA, and protein expression (Table 1). 
In the protein expression analysis, 3 proteins were signifi-
cantly upregulated (P < 0.05). 39 miRNAs showed signifi-
cant downregulation for miRNA expression with a fold 
change of ˂–1 and a P of ˂ 0.05. In the mRNA analysis, 
2905 genes were identified as significantly upregulated 
(fold change >1; P < 0.05). These findings reveal specific 
molecular alterations in breast cancer, including dysregu-
lated proteins, downregulated miRNAs, and upregulated 
mRNA genes. The integrated analysis of multiomic data 
from TCGA-BRCA provides valuable insights into the mo-
lecular landscape of breast cancer and enhances our under-

 
Table 1. Demographic and Clinical Information of Patients    

n 835 
Pathologic stage (%) 
Normal 9 (1.1) 
Stage_I                127 (15.2) 
Stage_II 479 (57.4) 
Stage_III 202 (24.2) 
Stage_IV 18 (2.2) 
Age, years, mean (SD)      58.34 (13.28) 
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standing of the underlying mechanisms involved in the dis-
ease. 

 
Network Analysis and Degree Distribution 
Various analyses were conducted to understand the con-

nectivity patterns within the graph. Initially, the degree dis-
tribution of the graph was calculated to determine the fre-
quency of nodes with different degrees, providing valuable 
information about connectivity distribution. Subsequently, 
a power-law model was fitted to the degree distribution, 
yielding a power-law exponent of 6.497. This exponent 
suggests the presence of highly connected nodes potentially 
following a power-law pattern. The goodness-of-fit of the 
power-law model was assessed using a Kolmogorov-
Smirnov test, resulting in a P value of 0.943, indicating a 
good fit. The Pearson correlation coefficient between the 
in-degree and out-degree of the graph was 0.0467, suggest-
ing a very weak positive correlation. These analyses offered 
insights into the graph's characteristics and node connectiv-
ity distribution. The clustering coefficient was calculated to 
measure the tendency of nodes to cluster together, yielding 
a value of 0.222, indicating a moderate level of clustering 
and local interconnectedness. A log-log plot (Figure 1) was 
generated to visualize the degree distribution, illustrating 
the frequency of nodes with different degrees and aiding in 
examining distribution patterns. 

The plot provides insights into the degree distribution, 
highlighting the presence of highly connected nodes and 
potential patterns within the distribution. In summary, the 
analyses revealed a potential power-law distribution with a 
power-law exponent of 6.497, supported by the goodness-
of-fit test. A very weak positive correlation was observed 
between the in-degree and out-degree of the nodes. In ad-
dition, a moderate level of clustering was found within the 
network. The log-log plot enhances the understanding of 

the degree distribution and provides valuable information 
about the frequency of nodes with different degrees. 

 
Multimer Results 
This study investigated potential regulatory relationships 

between the hub genes identified in the network analysis 
and downregulated miRNAs. A total of 20 hub genes—
namely, AKT1, MAPK3, ALB, ACTB, HSP90AA1, 
MAPK1, HSPA4, FN1, HSPA8, ERBB2, ESR1, CDC42, 
RHOA, CDH1, HSP90AB1, EEF2, SOD1, UBC, EP300, 
and DECR1—were analyzed. The interactions between 
these hub genes and downregulated miRNAs were exam-
ined using the mulitmiR R package, which integrates 
miRNA-target interactions from multiple databases. The 
findings revealed specific miRNAs that were either pre-
dicted or experimentally validated to target the hub genes 
of interest. The analysis presented in Table 2 summarizes 
the downregulated miRNAs and their corresponding target 
genes (hub genes) identified in this study. It was observed 
that several miRNAs exhibited downregulation and were 
predicted or experimentally validated to target specific hub 
genes. Among them, hsa-miR-107 was found to target 
genes—including CDC42, ACTB, HSPA4, HSP90AA1, 
HSP90AB1, MAPK3, ALB, ESR1, HSPA8, and DECR1. 
These findings suggest potential regulatory interactions be-
tween the identified hub genes and the downregulated miR-
NAs, indicating their potential involvement in the observed 
gene expression changes. 

 
Pathway Enrichment and Visualization 
To identify proteins associated with breast cancer pro-

gression, omic data analysis compared late-stage and early-
stage samples. Three proteins of interest, WIPI1, IGFBP2, 
and DUSP6, were identified in this analysis. WIPI1 is in-
volved in autophagy processes  (17), IGFBP2 plays a role 

  
Figure 1. Log-Log Plot of Degree Distribution. 
The plot provides insights into the degree distribution, highlighting the presence of highly connected nodes and potential patterns within the distri-
bution. In summary, the analyses revealed a potential power-law distribution with a power-law exponent of 6.497, supported by the goodness-of-fit 
test. A very weak positive correlation was observed between the in-degree and out-degree of the nodes. In addition, a moderate level of clustering 
was found within the network. The log-log plot enhances the understanding of the degree distribution and provides valuable information about the 
frequency of nodes with different degrees. 
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in MAPK signaling regulation (18), and DUSP6 is associ-
ated with the MAPK pathway (19). Enrichment analysis re-
vealed several significantly enriched pathways in breast 
cancer. The Proteoglycans in the cancer pathway showed 
the highest enrichment (P = 4.9E-10), followed by the 
PI3K-Akt pathway (P = 1.48E-05) and the mitogen-acti-
vated protein kinase (MAPK) signaling pathway (P = 
4.65E-06). The selection of WIPI1, IGFBP2, and DUSP6 
as proteins of interest aligns with their involvement in the 
PI3K-Akt and MAPK pathways and their potential signifi-
cance in breast cancer progression. These proteins likely 
mediate the effects of proteoglycans on cancer progression, 
given their associations with key pathways. Visualizing 
these pathways using Pathview provides a comprehensive 
understanding of the molecular mechanisms and potential 
crosstalk between these proteins and other molecules 

within the pathways (see Supplementary Figure 1 for pro-
teoglycans in the cancer pathway and Supplementary Fig-
ure 2 for PI3K-Akt signaling pathway). The complete list 
of enriched pathways in breast cancer is provided in Table 
3. 

 
Validation 
To validate the upregulated hub genes from TCGA, the 

independent gene expression dataset GSE139038 was used. 
This dataset included transcriptomic data from early and 
late-stage breast cancer samples. Differential expression 
analysis using GEO2R compared late- and early-stage sam-
ples in GSE139038, with criteria set as a log2 fold change 
(log2FC) >1 and P < 0.05. The upregulated hub genes from 
TCGA were cross-referenced with the upregulated genes 
from the late- versus early-stage comparison in 
GSE139038. This validation process identified 8 consist-
ently upregulated hub genes—ACTB, HSP90AA1, FN1, 
HSPA8, CDC42, CDH1, UBC, EP300—in both datasets 
(Table 4). These hub genes show reproducibility across in-
dependent cohorts of early- and late-stage breast cancer 
samples, indicating their potential as biomarkers of disease 
progression. The validation analysis using GEO2R con-
firms the consistent upregulation of the hub genes identi-
fied from TCGA during breast cancer progression in the 
external dataset (GSE139038). These validated hub genes 
can be further investigated as potential prognostic bi-
omarkers or therapeutic targets in breast cancer research. 
Table 4 provides a summary of the validated hub genes. 

 
FN1 Expression  
In this study, the expression of FN1 was investigated. 

Pathway enrichment analysis revealed the significance of 
the proteoglycan pathway in cancer. Specifically, the 
mRNA expression of FN1, which serves as a hub gene in 
the proteoglycans pathway, was found to be significantly 
higher in tumor tissues from women with late-stage breast 
cancer compared to early-stage breast samples. To further 

Table 2. Downregulated miRNAs and Their Corresponding Target Genes (Hub Genes)  
Downregulated miRNA Target Gene (Hub Gene) 
hsa-miR-375, hsa-miR-940, hsa-miR-484, hsa-miR-326 ERBB2 
hsa-miR-107, hsa-miR-577, hsa-miR-375, hsa-miR-484 CDC42 
hsa-miR-375, hsa-miR-592, hsa-miR-577, hsa-miR-147b,  
hsa-miR-484, hsa-miR-940, hsa-miR-429, hsa-miR-1270 

RHOA 

hsa-miR-451a, hsa-miR-326, hsa-miR-1976  AKT1 
hsa-miR-484, hsa-miR-326, hsa-miR-107 ACTB 
hsa-miR-429, hsa-miR-484, hsa-miR-940 EP300 
hsa-miR-107, hsa-miR-375 HSPA4 
hsa-miR-107, hsa-miR-375, hsa-miR-484, hsa-miR-935 HSP90AA1 
hsa-miR-107, hsa-miR-375 , hsa-miR-484 HSP90AB1 
hsa-miR-1976, hsa-miR-484, hsa-miR-1269a, hsa-miR-326, hsa-miR-940,             hsa-mi
R-451a  

MAPK1 

hsa-miR-107, hsa-miR-375  MAPK3 
hsa-miR-1269a, hsa-miR-326  UBC 
hsa-miR-107  ALB 
hsa-miR-429, hsa-miR-577, hsa-miR-1270  FN1 
hsa-miR-934, hsa-miR-107 ESR1 
hsa-miR-375, hsa-miR-107 HSPA8 
hsa-miR-484  CDH1 
hsa-miR-107, hsa-miR-429 DECR1 

 

 
 
Figure 2. The comparative expression analysis of FN1 in different 
stages of BC, *P = 0.6743 (nonsignificant). 
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investigate this observation, blood samples were collected 
from women with stage I, II, and III breast cancer (n = 3), 
and their mRNA expression profiles were analyzed using 
RT-qPCR. The results demonstrated a stage-dependent in-
crease in FN1 mRNA expression (Figure 2). This suggests 
that FN1 can potentially serve as a candidate blood mRNA 
biomarker for breast cancer. The statistical significance of 
the differences between the normal and cancer groups was 
assessed using an F test, and the graphs were generated us-
ing GraphPad Prism 9. The primer sequences used in this 
study are available and specified as follows:  

20 GTGTGTTGGGAATGGTCGTG f-FN1 

19 CGCTTGTGGAATGTGTCGT r-FN1 
 
Discussion 
The integrated analysis of multi-omic data in this study 

aimed to unravel the regulatory mechanisms and network 
characteristics associated with breast cancer. By analyzing 
the TCGA-BRCA dataset, several key findings were ob-
tained, including dysregulated genes, miRNAs, and pro-
teins and their network characteristics and regulatory mech-
anisms. These findings contribute to our understanding of 
the molecular landscape of breast cancer and have implica-
tions for identifying potential therapeutic targets and strat-
egies. One of this study's most important findings was iden-
tifying dysregulated genes, miRNAs, and proteins in breast 
cancer. The differential expression analysis revealed a set 
of genes that were abnormally expressed in breast cancer 
samples compared to normal samples. Similarly, dysregu-
lated miRNAs and proteins were also identified. These 
findings highlight the molecular alterations that are associ-
ated with breast cancer and provide insights into potential 
biomarkers for the disease. The construction of a protein-

protein interaction network allowed for exploring interac-
tions between differentially expressed genes. The network 
analysis provided valuable insights into the connectivity 
patterns and identified hub genes with important functional 
roles in breast cancer. It was observed that these hub genes 
were highly connected and had high betweenness central-
ity, indicating their significance in the disease. This finding 
suggests that these hub genes may serve as potential thera-
peutic targets for breast cancer treatment. Furthermore, the 
study investigated the potential regulatory relationships be-
tween hub genes and downregulated miRNAs. By utilizing 
the multiMiR R package, known and predicted miRNA-tar-
get interactions were explored. This analysis provided ad-
ditional insights into the regulatory landscape of breast can-
cer and expanded our understanding of potential therapeu-
tic interventions. Integrating miRNA-target interactions 
and disease-drug associations further enhanced the compre-
hensive view of the regulatory mechanisms underlying 
breast cancer. Several miRNAs were found to be downreg-
ulated and predicted or experimentally validated to target 
specific hub genes. Notably, hsa-miR-107 was identified as 
a regulator of genes—including CDC42, ACTB, HSPA4, 
HSP90AA1, HSP90AB1, MAPK3, ALB, ESR1, HSPA8, 
and DECR1. These findings suggest potential regulatory 
interactions between the downregulated miRNAs and the 
identified hub genes, indicating their involvement in the ob-
served gene expression changes. Takahashi et al have high-
lighted miRNA-107 as a potential therapeutic target for dis-
ease treatment, particularly in human lung cancers. In the 
context of lung cancers, miRNA-107 and miR-185 have 
been implicated in regulating the cell cycle, emphasizing 
their potential contribution to the regulation of cell cycle 
processes in malignant tumors (20). Furthermore, epige-

Table 3. Enriched Pathways 
ID Description Gene Ratio P Value 
hsa05205 Proteoglycans in cancer 9/21 <0.001 
hsa05417 Lipid and atherosclerosis 9/21 <0.001 
hsa04520 Adherens junction 8/21 <0.001 
hsa04510 Focal adhesion 8/21 <0.001 
hsa05131 Shigellosis 8/21 <0.001 
hsa05132 Salmonella infection 8/21 <0.001 
hsa05215 Prostate cancer 7/21 <0.001 
hsa04915 Estrogen signaling pathway 7/21 <0.001 
hsa05135 Yersinia infection 7/21 <0.001 
hsa04015 Rap1 signaling pathway 7/21 <0.001 
hsa04810 Regulation of actin cytoskeleton 7/21 <0.001 
hsa04010 MAPK signaling pathway 7/21 <0.001 
hsa04151 PI3K-Akt signaling pathway 7/21 <0.001 

 
Table 4. Validated Upregulated Hub Genes in Breast Cancer Progression 

Gene P Value logFC Gene P Value logFC 
AKT1 0.037 0.983348 ESR1 0.031 0.359 
MAPK3 0.967 0.013248 CDC42 0.002 1.131 
ALB NA NA RHOA 0.004 0.752 
ACTB 0.091 1.036123 CDH1 0.001 1.182 
HSP90AA1 0.036 1.333578 HSP90AB1 0.011 0.782 
MAPK1 0.039 0.983738 EEF2 0.012 0.775 
HSPA4 0.070 0.938271 SOD1 0.094 -0.027 
FN1 0.014 1.724786 UBC 0.000 1.194 
HSPA8 0.010 1.15904 EP300 0.000 1.144 
ERBB2 0.169 0.711806 DECR1 0.021 0.600 
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netic silencing of miR-107 has been shown to modulate Cy-
clin-Dependent Kinase 6 expression in pancreatic cancer. 
These findings suggest that targeting miRNA-107 holds 
promise for potential therapeutic interventions in various 
diseases (21). Pathway enrichment analysis was performed 
to gain insights into the functional roles of the hub genes 
within specific molecular pathways. The analysis revealed 
an association between the proteoglycans in the cancer 
pathway (22) and several other pathways, including the 
PI3K-Akt signaling pathway (23), MAPK signaling path-
way (24), and cell cycle pathway (25). This finding sug-
gests that the dysregulated hub genes may be involved in 
multiple pathways that play crucial roles in breast cancer 
development and progression. The interplay between these 
pathways may contribute to the complex nature of the dis-
ease. The identification of the link between the proteogly-
cans in cancer pathways and other pathways provides val-
uable data for comprehending the molecular mechanisms 
underlying breast cancer. It suggests potential crosstalk and 
interactions between these pathways, which may contribute 
to the dysregulation of key genes and signaling pathways 
involved in breast cancer. Targeting these interconnected 
pathways and hub genes may represent a promising ap-
proach to developing effective therapeutic strategies for 
breast cancer. Despite the valuable insights gained from 
this integrated analysis, certain limitations should be con-
sidered. First, the analysis was based on publicly available 
datasets, such as TCGA-BRCA. While these datasets are 
valuable, they have inherent limitations, such as sample 
heterogeneity and potential batch effects. Furthermore, the 
analysis focused on specific molecular alterations, and 
other important factors, such as epigenetic modifications 
and noncoding RNAs, were not considered. Future studies 
should aim to incorporate a broader range of omics data and 
utilize more comprehensive datasets to enhance our under-
standing of breast cancer further. Another limitation of this 
study is the small sample size used for the analysis of FN1 
mRNA expression in blood samples from women with 
stage I, II, and III breast cancer. The study included only 3 
patients, which may not represent the broader breast cancer 
population. As a result, the statistical power to detect sig-
nificant differences between the normal and cancer groups 
was limited. The F test used to assess the statistical signifi-
cance of the differences did not reach significance, possibly 
due to the small sample size. Therefore, caution should be 
exercised when interpreting the results, and further studies 
with larger sample sizes are necessary to validate the po-
tential utility of FN1 as a blood mRNA biomarker for breast 
cancer. Increasing the sample size would enhance the sta-
tistical power and provide more robust and reliable results. 
In conclusion, the integrated analysis of multiomic data in 
breast cancer has provided valuable insights into the regu-
latory mechanisms, network characteristics, and functional 
roles of dysregulated genes, miRNAs, and proteins. Identi-
fying hub genes and pathways in our study offers promising 
prospects for developing targeted therapies and precision 
medicine approaches in breast cancer treatment. By target-
ing these specific molecular drivers, we can aim for more 
effective and personalized treatment strategies to poten-
tially improve patient outcomes. These findings contribute 

to our understanding of the molecular mechanisms under-
lying breast cancer and may have implications for identify-
ing potential therapeutic targets and strategies. However, it 
is important to consider the study's limitations and further 
investigate the role of additional molecular factors in breast 
cancer pathogenesis. 

 
Conclusion 
 Our integrated analysis of multiomic data from the 

TCGA-BRCA dataset has provided valuable insights into 
the regulatory mechanisms, network characteristics, and 
functional roles of genes, microRNAs (miRNAs), and pro-
teins in breast cancer. Through this comprehensive analy-
sis, we have identified 8 consistently upregulated hub genes 
(ACTB, HSP90AA1, FN1, HSPA8, CDC42, CDH1, UBC, 
and EP300) that play potentially significant roles in driving 
the disease. These hub genes serve as potential therapeutic 
targets for breast cancer treatment. Furthermore, pathway 
enrichment analysis has revealed highly enriched pathways 
in breast cancer, including proteoglycans in cancer, PI3K-
Akt, and MAPK signaling. The dysregulation of these path-
ways highlights their importance in the development and 
progression of breast cancer. Understanding the functional 
roles of the hub genes within these pathways provides cru-
cial information for developing effective treatment strate-
gies. 
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Supplementray Figure 1. Pathview analysis of Proteoglycans in cancer pathway 
 

 
Supplementray Figure 2. Pathview analysis of PI3K-Akt signaling pathway 
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